Control surface design for radio-controlled aircraft. Case: SAE Aero Design Micro-class prototype
This research article presents a design methodology for primary control surfaces (Ailerons, Rudder and Elevator) for experimental unmanned radio-controlled aircraft. The methodology is based on the proposal and standardization of the required mechanical and aerodynamic analysis for each control surf...
Gespeichert in:
Veröffentlicht in: | Revista Facultad de Ingeniería 2022-07 (104), p.71-82 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research article presents a design methodology for primary control surfaces (Ailerons, Rudder and Elevator) for experimental unmanned radio-controlled aircraft. The methodology is based on the proposal and standardization of the required mechanical and aerodynamic analysis for each control surface sizing, considering the SAE Aero Design competition objectives within Micro Class. It is used on empirical results previously described in references about aeronautical design, computerized fluids dynamics (CFD) software, and aircraft controllability regulations in order to obtain the design variables. Based on this information, the iteration sequences required for design were automated by a C++ language code to obtain the optimal characteristics for each surface, thereby reducing the possibility of calculation errors, overall time, and workload invested in the design process. The application of the methodology to the latest aircraft design reduced the total control systems weight to the aircraft’s empty weight ratio to a minimum of 3.4%. |
---|---|
ISSN: | 0120-6230 2422-2844 |
DOI: | 10.17533/udea.redin.20210740 |