Self-healing liquid metal composite for reconfigurable and recyclable soft electronics

Soft electronics and robotics are in increasing demand for diverse applications. However, soft devices typically lack rigid enclosures which can increase their susceptibility to damage and lead to failure and premature disposal. This creates a need for soft and stretchable functional materials with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications materials 2021-06, Vol.2 (1), p.1-8, Article 64
Hauptverfasser: Tutika, Ravi, Haque, A. B. M. Tahidul, Bartlett, Michael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soft electronics and robotics are in increasing demand for diverse applications. However, soft devices typically lack rigid enclosures which can increase their susceptibility to damage and lead to failure and premature disposal. This creates a need for soft and stretchable functional materials with resilient and regenerative properties. Here we show a liquid metal-elastomer-plasticizer composite for soft electronics with robust circuitry that is self-healing, reconfigurable, and ultimately recyclable. This is achieved through an embossing technique for on-demand formation of conductive liquid metal networks which can be reprocessed to rewire or completely recycle the soft electronic composite. These skin-like electronics stretch to 1200% strain with minimal change in electrical resistance, sustain numerous damage events under load without losing electrical conductivity, and are recycled to generate new devices at the end of life. These soft composites with adaptive liquid metal microstructures can find broad use for soft electronics and robotics with improved lifetime and recyclability. There is growing interest in flexible electronic devices, though their soft nature can make them vulnerable to damage. Here, a liquid metal-elastomer composite is shown to self-heal, can be stretched 1200% with limited change in electrical resistance, and the conductive circuit can be reconfigured.
ISSN:2662-4443
2662-4443
DOI:10.1038/s43246-021-00169-4