Impact of Theaflavins-Enriched Tea Leaf Extract TY-1 against Surrogate Viruses of Human Norovirus: In Vitro Virucidal Study

Using an effective natural virucidal substance may be a feasible approach for preventing food-borne viral contamination. Here, the virucidal efficacy of theaflavins (TFs)-enriched tea leaf extract (TY-1) against feline calicivirus (FCV) and murine norovirus (MNV), surrogates of human norovirus (HuNo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pathogens (Basel) 2022-05, Vol.11 (5), p.533
Hauptverfasser: Mohamed, Israa M A, Jamsransuren, Dulamjav, Matsuda, Sachiko, Ogawa, Haruko, Takeda, Yohei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using an effective natural virucidal substance may be a feasible approach for preventing food-borne viral contamination. Here, the virucidal efficacy of theaflavins (TFs)-enriched tea leaf extract (TY-1) against feline calicivirus (FCV) and murine norovirus (MNV), surrogates of human norovirus (HuNoV), was evaluated. The virus solutions were mixed with various dosages of TY-1 and incubated at 25 °C for different contact times. TY-1 reduced the viral titer of both surrogate viruses in a time- and dosage-dependent manner. A statistically significant reduction in the viral titer of FCV by 5.0 mg/mL TY-1 and MNV by 25.0 mg/mL TY-1 was observed in 10 s and 1 min, respectively. Furthermore, TY-1 reduced the viral titer of FCV and MNV on the dry surface in 10 min. The multiple compounds in TY-1, including TFs and catechins, contributed to its overall virucidal activity. Furthermore, the effect of TY-1 on viral proteins and genome was analyzed using Western blotting, RT-PCR, and transmission electron microscopy. TY-1 was found to promote the profound disruption of virion structures, including the capsid proteins and genome. Our finding demonstrates the potential of using TY-1 as a nature-derived disinfectant in food processing facilities and healthcare settings to reduce viral load and HuNoV transmission.
ISSN:2076-0817
2076-0817
DOI:10.3390/pathogens11050533