Prediction of Bubble Size Distributions in Large-Scale Bubble Columns Using a Population Balance Model
A precise estimation of the bubble size distribution (BSD) is required to understand the fluid dynamics in gas-liquid bubble columns at the “bubble scale,” evaluate the heat and mass transfer rate, and support scale-up approaches. In this paper, we have formulated a population balance model, and we...
Gespeichert in:
Veröffentlicht in: | Computation 2019-03, Vol.7 (1), p.17 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A precise estimation of the bubble size distribution (BSD) is required to understand the fluid dynamics in gas-liquid bubble columns at the “bubble scale,” evaluate the heat and mass transfer rate, and support scale-up approaches. In this paper, we have formulated a population balance model, and we have validated it against a previously published experimental dataset. The experimental dataset consists of BSDs obtained in the “pseudo-homogeneous” flow regime, in a large-diameter and large-scale bubble column. The aim of the population balance model is to predict the BSD in the developed region of the bubble column using as input the BSD at the sparger. The proposed approach has been able to estimate the BSD correctly and is a promising approach for future studies and to estimate bubble size in large-scale gas–liquid bubble columns. |
---|---|
ISSN: | 2079-3197 2079-3197 |
DOI: | 10.3390/computation7010017 |