A Novel Prediction Model of the Drag Coefficient of Shale Cuttings in Herschel–Bulkley Fluid
In the drilling industry, it is of great significance to accurately predict the drag coefficient and settling velocity of drill cuttings falling in the non-Newtonian drilling fluid. However, the irregular shape of drill cuttings and the non-Newtonian rheological properties of drilling fluid (e.g., s...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2022-06, Vol.15 (12), p.4496 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the drilling industry, it is of great significance to accurately predict the drag coefficient and settling velocity of drill cuttings falling in the non-Newtonian drilling fluid. However, the irregular shape of drill cuttings and the non-Newtonian rheological properties of drilling fluid (e.g., shear-thinning and yield stress behavior) make it challenging to predict the settling velocity. In this study, the velocity of particle settlement was studied by a visual device and high-speed camera system. Experimental data of the free settlement of 224 irregular drilling cuttings and 105 spherical particles in the Herschel–Bulkley fluid were obtained. A mechanical model dependent on the force balance of settlement particles was adopted to conduct a detailed statistical analysis of the experimental results, and a prediction model of the drag coefficient of spherical particles in the Herschel–Bulkley fluid was established. A two-dimensional shape description parameter is introduced to establish a model for predicting the drag coefficient of irregular-shaped cuttings in a Herschel–Bulkley fluid. The model has high prediction accuracy for the settling velocity of irregular shale cuttings in Herschel–Bulkley fluid. The average relative error is 7.14%, verifying the model’s accuracy. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15124496 |