Polynomials in Control Theory Parametrized by Their Roots

The aim of this paper is to introduce the space of roots to study the topological properties of the spaces of polynomials. Instead of identifying a monic complex polynomial with the vector of its coefficients, we identify it with the set of its roots. Viète's map gives a homeomorphism between t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Mathematics and Mathematical Sciences 2012, Vol.2012 (2012), p.1313-1331-093
Hauptverfasser: Baltazar Aguirre-Hernandez, Jose Luis Cisneros-Molina, Martın-Eduardo Frias-Armenta
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to introduce the space of roots to study the topological properties of the spaces of polynomials. Instead of identifying a monic complex polynomial with the vector of its coefficients, we identify it with the set of its roots. Viète's map gives a homeomorphism between the space of roots and the space of coefficients and it gives an explicit formula to relate both spaces. Using this viewpoint we establish that the space of monic (Schur or Hurwitz) aperiodic polynomials is contractible. Additionally we obtain a Boundary Theorem.
ISSN:0161-1712
1687-0425
DOI:10.1155/2012/595076