Research on High-Speed Train Bearing Fault Diagnosis Method Based on Domain-Adversarial Transfer Learning

Traditional bearing fault diagnosis methods struggle to effectively extract distinctive, domain-invariable characterizations from one-dimensional vibration signals of high-speed train (HST) bearings under variable load conditions. A deep migration fault diagnosis method based on the combination of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-10, Vol.14 (19), p.8666
Hauptverfasser: Zou, Yingyong, Zhao, Wenzhuo, Liu, Tao, Zhang, Xingkui, Shi, Yaochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional bearing fault diagnosis methods struggle to effectively extract distinctive, domain-invariable characterizations from one-dimensional vibration signals of high-speed train (HST) bearings under variable load conditions. A deep migration fault diagnosis method based on the combination of a domain-adversarial network and signal reconstruction unit (CRU) is proposed for this purpose. The feature extraction module, which includes a one-dimensional convolutional (Cov1d) layer, a normalization layer, a ReLU activation function, and a max-pooling layer, is integrated with the CRU to form a feature extractor capable of learning key fault-related features. Additionally, the fault identification module and domain discrimination module utilize a combination of fully connected layers and dropout to reduce model parameters and mitigate the risk of overfitting. It is experimentally validated on two sets of bearing datasets, and the results show that the performance of the proposed method is better than other diagnostic methods under cross-load conditions, and it can be used as an effective cross-load bearing fault diagnosis method.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14198666