On a Partial Fractional Hybrid Version of Generalized Sturm–Liouville–Langevin Equation

As we know one of the most important equations which have many applications in various areas of physics, mathematics, and financial markets, is the Sturm–Liouville equation. In this paper, by using the α-ψ-contraction technique in fixed point theory and employing some functional inequalities, we stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractal and fractional 2022-05, Vol.6 (5), p.269
Hauptverfasser: Heydarpour, Zohreh, Izadi, Javad, George, Reny, Ghaderi, Mehran, Rezapour, Shahram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As we know one of the most important equations which have many applications in various areas of physics, mathematics, and financial markets, is the Sturm–Liouville equation. In this paper, by using the α-ψ-contraction technique in fixed point theory and employing some functional inequalities, we study the existence of solutions of the partial fractional hybrid case of generalized Sturm–Liouville-Langevin equations under partial boundary value conditions. Towards the end, we present two examples with numerical and graphical simulation to illustrate our main results.
ISSN:2504-3110
2504-3110
DOI:10.3390/fractalfract6050269