ACORBA: Automated workflow to measure Arabidopsis thaliana root tip angle dynamics
The ability of plants to sense and orient their root growth towards gravity is studied in many laboratories. It is known that manual analysis of image data is subjected to human bias. Several semi-automated tools are available for analysing images from flatbed scanners, but there is no solution to a...
Gespeichert in:
Veröffentlicht in: | Quantitative plant biology 2022, Vol.3, p.e9-e9, Article e9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ability of plants to sense and orient their root growth towards gravity is studied in many laboratories. It is known that manual analysis of image data is subjected to human bias. Several semi-automated tools are available for analysing images from flatbed scanners, but there is no solution to automatically measure root bending angle over time for vertical-stage microscopy images. To address these problems, we developed ACORBA, which is an automated software that can measure root bending angle over time from vertical-stage microscope and flatbed scanner images. ACORBA also has a semi-automated mode for camera or stereomicroscope images. It represents a flexible approach based on both traditional image processing and deep machine learning segmentation to measure root angle progression over time. As the software is automated, it limits human interactions and is reproducible. ACORBA will support the plant biologist community by reducing labour and increasing reproducibility of image analysis of root gravitropism. |
---|---|
ISSN: | 2632-8828 2632-8828 |
DOI: | 10.1017/qpb.2022.4 |