Geothermal heat use to eliminate hydrate formations in oil deposit injection wells

The article is devoted to an actual issue: the development of internal downhole heat exchangers technology to combat hydration in injection wells. Purpose: development of conceptual solutions for the use of geothermal coolant in the internal well heat exchanger of the injection well. A scheme of an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:E3S web of conferences 2021-01, Vol.230, p.1019
Hauptverfasser: Fyk, Мykhailo, Biletskyi, Volodymyr, Аbbood, Madjid, Аnzian, Fabris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The article is devoted to an actual issue: the development of internal downhole heat exchangers technology to combat hydration in injection wells. Purpose: development of conceptual solutions for the use of geothermal coolant in the internal well heat exchanger of the injection well. A scheme of an internal downhole heat exchanger with a geothermal heat carrier has been developed, and includes a supply line of a geothermal carrier through the heat exchange surface of the injection well into the productive reservoir of the oil field. The scheme provides targeted utilization of thermobaric energy of a geothermal source to combat hydration in the injection well. A mathematical apparatus for describing the process of heat utilization and heat exchange in injection well is proposed. It is established that the capacity of one geothermal well discovered at the oil depths in the Dnipro-Donetsk basin is sufficient to eliminate hydration in 1-3 injection wells, and determines the feasibility of their joint work.
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/202123001019