Mitochondrial ROS-mediated ribosome stalling and GCN2 activation are partially involved in 1-nitropyrene-induced steroidogenic inhibition in testes

In the past 50 years, testosterone (T) level in men has declined gradually. In this research, we discovered that acute exposure to 1-nitropyrene (1-NP), an environmental stressor from polluted atmosphere, reduced T contents by downregulating steroidogenic proteins in mouse testes and Leydig cells. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environment international 2022-09, Vol.167, p.107393-107393, Article 107393
Hauptverfasser: Li, Jian, Gao, Lan, Chen, Jing, Zhang, Wei-Wei, Zhang, Xiao-Yi, Wang, Bo, Zhang, Cheng, Wang, Yan, Huang, Yi-Chao, Wang, Hua, Wei, Wei, Xu, De-Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the past 50 years, testosterone (T) level in men has declined gradually. In this research, we discovered that acute exposure to 1-nitropyrene (1-NP), an environmental stressor from polluted atmosphere, reduced T contents by downregulating steroidogenic proteins in mouse testes and Leydig cells. Acute 1-NP exposure caused GCN2 activation and eIF2α phosphorylation, a marker of integrated stress, in mouse testes and Leydig cells. GCN2iB, a selective GCN2 kinase inhibitor, and siGCN2, the GCN2-targeted short interfering RNA, attenuated 1-NP-induced reduction of steroidogenic proteins in Leydig cells. Mechanistically, mitochondrial membrane potential was reduced and ATP5A, UQCRC2, SDHB and NDUFB8, four OXPHOS subunits, were reduced in 1-NP-exposed Leydig cells. Cellular mitochondrial respiration was inhibited and ATP production was reduced. Moreover, mitochondrial reactive oxygen species (ROS) were elevated in 1-NP-exposed Leydig cells. The interaction between GCN2 and uL10, a marker of ribosome stalling, was observed in 1-NP-exposed Leydig cells. MitoQ, a mitochondria-targeted antioxidant, attenuated1-NP-evoked ATP depletion and ribosome stalling in Leydig cells. Moreover, MitoQ suppressed 1-NP-caused GCN2 activation and eIF2α phosphorylation in Leydig cells. In addition, MitoQ alleviated 1-NP-induced steroidogenic inhibition in mouse testes. In conclusion, mitochondrial ROS-mediated ribosome stalling and GCN2 activation are partially involved in environmental stress-induced steroidogenic inhibition in testes.
ISSN:0160-4120
1873-6750
DOI:10.1016/j.envint.2022.107393