Computational learning of features for automated colonic polyp classification

Shape, texture, and color are critical features for assessing the degree of dysplasia in colonic polyps. A comprehensive analysis of these features is presented in this paper. Shape features are extracted using generic Fourier descriptor. The nonsubsampled contourlet transform is used as texture and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-02, Vol.11 (1), p.4347-4347, Article 4347
Hauptverfasser: Bora, Kangkana, Bhuyan, M. K., Kasugai, Kunio, Mallik, Saurav, Zhao, Zhongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shape, texture, and color are critical features for assessing the degree of dysplasia in colonic polyps. A comprehensive analysis of these features is presented in this paper. Shape features are extracted using generic Fourier descriptor. The nonsubsampled contourlet transform is used as texture and color feature descriptor, with different combinations of filters. Analysis of variance (ANOVA) is applied to measure statistical significance of the contribution of different descriptors between two colonic polyps: non-neoplastic and neoplastic. Final descriptors selected after ANOVA are optimized using the fuzzy entropy-based feature ranking algorithm. Finally, classification is performed using Least Square Support Vector Machine and Multi-layer Perceptron with five-fold cross-validation to avoid overfitting. Evaluation of our analytical approach using two datasets suggested that the feature descriptors could efficiently designate a colonic polyp, which subsequently can help the early detection of colorectal carcinoma. Based on the comparison with four deep learning models, we demonstrate that the proposed approach out-performs the existing feature-based methods of colonic polyp identification.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-83788-8