Genesis of Megacrystalline Uraninite: A Case Study of the Haita Area of the Western Margin of the Yangtze Block, China

Megacrystalline uraninite (up to one centimeter in size) represents one of the most important discoveries in uranium mineralogy in the western margin of the Yangtze Block and even in China in recent years. However, the genesis of megacrystalline uraninite remains controversial. In this study, the me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals (Basel) 2021-11, Vol.11 (11), p.1173
Hauptverfasser: Xu, Zhengqi, Yin, Minghui, Chen, Youliang, Xiang, Lu, Song, Hao, Zhang, Chengjiang, Yao, Jian, Guo, Hu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Megacrystalline uraninite (up to one centimeter in size) represents one of the most important discoveries in uranium mineralogy in the western margin of the Yangtze Block and even in China in recent years. However, the genesis of megacrystalline uraninite remains controversial. In this study, the megacrystalline uraninite found in the felsic and quartz veins in the Haita area is examined for the first time. The study examined the geochemical characteristics of uraninite in the two veins and resulted in two primary findings. (1) The genesis of the uraninite was likely intrusive and was closely related to partial melting. (2) The quartz vein and feldspar vein are cogenetic and have a simple differentiation evolution relationship. Therefore, the partial melting of felsic materials during migmatization may be the most important mechanism of uranium mineralization in the study area. Furthermore, further simple fractional crystallization may be another important mechanism for the formation of megacrystalline uraninite. This study enriches the REE database of uraninite in uranium deposits worldwide, which is meaningful for studying the genesis of megacrystalline uraninite.
ISSN:2075-163X
2075-163X
DOI:10.3390/min11111173