Classification of Rock Mass Quality in Underground Rock Engineering with Incomplete Data Using XGBoost Model and Zebra Optimization Algorithm

Accurate rock mass quality classification is crucial for the design and construction of underground projects. Traditional methods often rely on expert experience, introducing subjectivity, and struggle with complex geological conditions. Machine learning algorithms have improved this issue, but obta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-08, Vol.14 (16), p.7074
Hauptverfasser: Yang, Bo, Liu, Yongping, Liu, Zida, Zhu, Quanqi, Li, Diyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate rock mass quality classification is crucial for the design and construction of underground projects. Traditional methods often rely on expert experience, introducing subjectivity, and struggle with complex geological conditions. Machine learning algorithms have improved this issue, but obtaining complete rock mass quality datasets is often difficult due to high cost and complex procedures. This study proposed a hybrid XGBoost model for predicting rock mass quality using incomplete datasets. The zebra optimization algorithm (ZOA) and Bayesian optimization (BO) were used to optimize the hyperparameters of the model. Data from various regions and types of underground engineering projects were utilized. Adaptive synthetic (ADASYN) oversampling addressed class imbalance. The model was evaluated using metrics including accuracy, Kappa, precision, recall, and F1-score. The ZOA-XGBoost model achieved an accuracy of 0.923 on the test set, demonstrating the best overall performance. Feature importance analysis and individual conditional expectation (ICE) plots highlighted the roles of RQD and UCS in predicting rock mass quality. The model’s robustness with incomplete data was verified by comparing its performance with other machine learning models on a dataset with missing values. The ZOA-XGBoost model outperformed other models, proving its reliability and effectiveness. This study provides an efficient and objective method for rock mass quality classification, offering significant value for engineering applications.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14167074