Carbon dioxide expanded liquid: an effective solvent for the extraction of quercetin from South African medicinal plants

Quercetin is one of the most important bioflavonoids having positive effects on the biological processes and human health. Typically, it is extracted from plant matrices using conventional methods such as maceration, sonication, infusion, and Soxhlet extraction with high solvent consumption. Our stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant methods 2022-06, Vol.18 (1), p.1-87, Article 87
Hauptverfasser: PilaÅová, Veronika, Kuda, LukáÅ, Vlcková, Hana Kocová, Nováková, Lucie, Gupta, Shubhpriya, Kulkarni, Manoj, Svec, FrantiÅ¡ek, Van Staden, Johannes, Dolezal, Karel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quercetin is one of the most important bioflavonoids having positive effects on the biological processes and human health. Typically, it is extracted from plant matrices using conventional methods such as maceration, sonication, infusion, and Soxhlet extraction with high solvent consumption. Our study aimed to optimize the environmentally friendly carbon dioxide-based method for the extraction of quercetin from quince fruit with an emphasis on extraction yield, repeatability, and short extraction time. A two-step design of experiments was used for the optimization of the key parameters affecting physicochemical properties, including CO.sub.2/co-solvent ratio, co-solvent type, temperature, and pressure. Finally, gas expanded liquid combining CO.sub.2/ethanol/H.sub.2O in a ratio of 10/81/9 (v/v/v) provided the best extraction yield. Extraction temperature 66 [degrees]C and pressure 22.3 MPa were the most suitable conditions after careful optimization, although both parameters did not significantly affect the process. It was confirmed by experiments in various pressure and temperature conditions and statistical comparison of obtained data. The optimized extraction procedure at a flow rate of 3 mL/min took 30 min. The repeatability of the extraction method exhibited an RSD of 20.8%. The optimized procedure enabled very fast extraction in 30 min using environmentally friendly solvents and it was successfully applied to 16 different plant samples, including 14 bulbs and 2 fruits from South Africa. The quercetin content in extracts was quantified using ultra-high performance liquid chromatography (UHPLC) with tandem mass spectrometry. UHPLC hyphenated with high-resolution mass spectrometry was used to confirm chemical identity of quercetin in the analyzed samples. We quantified quercetin in 11 samples of all 16 tested plants. The quercetin was found in Agapanthus praecox from the Amaryllidaceae family and its presence in this specie was reported for the first time.
ISSN:1746-4811
1746-4811
DOI:10.1186/s13007-022-00919-6