NMR-Based Shale Core Imbibition Performance Study
Shale gas reservoirs are unconventional resources with great potential to help meet energy demands. Horizontal drilling and hydraulic fracturing have been extensively used for the exploitation of these unconventional resources. According to engineering practice, some shale gas wells with low flowbac...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2022-09, Vol.15 (17), p.6319 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Shale gas reservoirs are unconventional resources with great potential to help meet energy demands. Horizontal drilling and hydraulic fracturing have been extensively used for the exploitation of these unconventional resources. According to engineering practice, some shale gas wells with low flowback rate of fracturing fluids may obtain high yield which is different from the case of conventional sandstone reservoirs, and fracturing fluid absorbed into formation by spontaneous imbibition is an important mechanism of gas production. This paper integrates NMR into imbibition experiment to examine the effects of fractures, fluid salinity, and surfactant concentration on imbibition recovery and performance of shale core samples with different pore-throat sizes acquired from the Longmaxi Formation in Luzhou area, the Sichuan Basin. The research shows that the right peak of T2 spectrum increases rapidly during the process of shale imbibition, the left peak increases rapidly at the initial stage and changes gently at the later stage, with the peak of the left peak shifting to the right. The result indicates that water first enters the fracture system quickly, then enters the small pores near the fracture wall due to the effect of the capillary force, and later gradually sucks into the deep and large pores. Both imbibition rate and capacity increase with increased fracture density, decreased solution salinity, and decreased surfactant concentration. After imbibition flowback, shale permeability generally increases by 8.70–17.88 times with the average of 13.83 times. There are also many microcracks occurring on the end face and surface of the core sample after water absorption, which may function as new flowing channels to further improve reservoir properties. This research demonstrates the imbibition characteristics of shale and several relevant affecting factors, providing crucial theory foundations for the development of shale gas reservoirs. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en15176319 |