Infinitely Many Small Energy Solutions to the Double Phase Anisotropic Variational Problems Involving Variable Exponent

This paper is devoted to double phase anisotropic variational problems for the case of a combined effect of concave–convex nonlinearities when the convex term does not require the Ambrosetti–Rabinowitz condition. The aim of the present paper, on a class of superlinear term which is different from th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Axioms 2023-03, Vol.12 (3), p.259
Hauptverfasser: Ahn, Jun-Hyuk, Kim, Yun-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to double phase anisotropic variational problems for the case of a combined effect of concave–convex nonlinearities when the convex term does not require the Ambrosetti–Rabinowitz condition. The aim of the present paper, on a class of superlinear term which is different from the previous related works, is to discuss the multiplicity result of non-trivial solutions by applying the dual fountain theorem as the main tool. In particular, our main result is obtained without assuming the conditions on the nonlinear term at infinity.
ISSN:2075-1680
2075-1680
DOI:10.3390/axioms12030259