An Extreme Learning Machine-Based Community Detection Algorithm in Complex Networks
Community structure, one of the most popular properties in complex networks, has long been a cornerstone in the advance of various scientific branches. Over the past few years, a number of tools have been used in the development of community detection algorithms. In this paper, by means of fusing un...
Gespeichert in:
Veröffentlicht in: | Complexity (New York, N.Y.) N.Y.), 2018-01, Vol.2018 (2018), p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Community structure, one of the most popular properties in complex networks, has long been a cornerstone in the advance of various scientific branches. Over the past few years, a number of tools have been used in the development of community detection algorithms. In this paper, by means of fusing unsupervised extreme learning machines and the k-means clustering techniques, we propose a novel community detection method that surpasses traditional k-means approaches in terms of precision and stability while adding very few extra computational costs. Furthermore, results of extensive experiments undertaken on computer-generated networks and real-world datasets illustrate acceptable performances of the introduced algorithm in comparison with other typical community detection algorithms. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2018/8098325 |