Equations in virtually class 2 nilpotent groups

We give an algorithm that decides whether a single equation in a group that is virtually a class $2$ nilpotent group with a virtually cyclic commutator subgroup, such as the Heisenberg group, admits a solution. This generalises the work of Duchin, Liang and Shapiro to finite extensions.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Groups, complexity, cryptology complexity, cryptology, 2022-01, Vol.14, Issue 1
1. Verfasser: Levine, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give an algorithm that decides whether a single equation in a group that is virtually a class $2$ nilpotent group with a virtually cyclic commutator subgroup, such as the Heisenberg group, admits a solution. This generalises the work of Duchin, Liang and Shapiro to finite extensions.
ISSN:1869-6104
1869-6104
DOI:10.46298/jgcc.2022.14.1.9776