Equations in virtually class 2 nilpotent groups
We give an algorithm that decides whether a single equation in a group that is virtually a class $2$ nilpotent group with a virtually cyclic commutator subgroup, such as the Heisenberg group, admits a solution. This generalises the work of Duchin, Liang and Shapiro to finite extensions.
Gespeichert in:
Veröffentlicht in: | Groups, complexity, cryptology complexity, cryptology, 2022-01, Vol.14, Issue 1 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give an algorithm that decides whether a single equation in a group that
is virtually a class $2$ nilpotent group with a virtually cyclic commutator
subgroup, such as the Heisenberg group, admits a solution. This generalises the
work of Duchin, Liang and Shapiro to finite extensions. |
---|---|
ISSN: | 1869-6104 1869-6104 |
DOI: | 10.46298/jgcc.2022.14.1.9776 |