The Construction and Approximation of ReLU Neural Network Operators
In the present paper, we construct a new type of two-hidden-layer feedforward neural network operators with ReLU activation function. We estimate the rate of approximation by the new operators by using the modulus of continuity of the target function. Furthermore, we analyze features such as paramet...
Gespeichert in:
Veröffentlicht in: | Journal of function spaces 2022-09, Vol.2022, p.1-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper, we construct a new type of two-hidden-layer feedforward neural network operators with ReLU activation function. We estimate the rate of approximation by the new operators by using the modulus of continuity of the target function. Furthermore, we analyze features such as parameter sharing and local connectivity in this kind of network structure. |
---|---|
ISSN: | 2314-8896 2314-8888 |
DOI: | 10.1155/2022/1713912 |