Combining the Multi-Genetic Algorithm and Support Vector Machine for Fault Diagnosis of Bearings
Overstudy or understudy phenomena can sometimes occur due to the strong dependence of support vector machine (SVM) algorithms on particular parameters and the lack of systems theory relating to parameter selection. In this paper, a parameter optimization algorithm for the SVM is proposed based on mu...
Gespeichert in:
Veröffentlicht in: | Shock and vibration 2018-01, Vol.2018 (2018), p.1-13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Overstudy or understudy phenomena can sometimes occur due to the strong dependence of support vector machine (SVM) algorithms on particular parameters and the lack of systems theory relating to parameter selection. In this paper, a parameter optimization algorithm for the SVM is proposed based on multi-genetic algorithm. The algorithm optimizes the correlation kernel parameters of the SVM using evolutionary search principles of multiple swarm genetic algorithms to obtain a superior SVM prediction model. The experimental results demonstrate that by combining the genetic algorithm and SVM algorithm, fault diagnosis can be effectively realized for bearings of rotating machinery. |
---|---|
ISSN: | 1070-9622 1875-9203 |
DOI: | 10.1155/2018/3091618 |