Combining the Multi-Genetic Algorithm and Support Vector Machine for Fault Diagnosis of Bearings

Overstudy or understudy phenomena can sometimes occur due to the strong dependence of support vector machine (SVM) algorithms on particular parameters and the lack of systems theory relating to parameter selection. In this paper, a parameter optimization algorithm for the SVM is proposed based on mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock and vibration 2018-01, Vol.2018 (2018), p.1-13
Hauptverfasser: Zhu, Hongbin, Liang, Qiong, Zhang, Qinghua, Xiong, Jianbin, Li, Haiying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Overstudy or understudy phenomena can sometimes occur due to the strong dependence of support vector machine (SVM) algorithms on particular parameters and the lack of systems theory relating to parameter selection. In this paper, a parameter optimization algorithm for the SVM is proposed based on multi-genetic algorithm. The algorithm optimizes the correlation kernel parameters of the SVM using evolutionary search principles of multiple swarm genetic algorithms to obtain a superior SVM prediction model. The experimental results demonstrate that by combining the genetic algorithm and SVM algorithm, fault diagnosis can be effectively realized for bearings of rotating machinery.
ISSN:1070-9622
1875-9203
DOI:10.1155/2018/3091618