Predicting the Bending Rigidity and Formability of Plasma-Treated Spunbond Nonwoven Fabrics Using Artificial Intelligence

Nonwoven fabrics are used in many industries, and surface treatment by plasma can significantly change their physical and mechanical properties by changing the surface chemistry and morphology. In this paper, oxygen/argon plasma has been applied to the spunbond nonwoven fabrics to predict the obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Textile & leather review (Online) 2024-06, Vol.7, p.1021-1038
Hauptverfasser: Hajar Sharifi, Morteza Vadood, Aminoddin Haji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonwoven fabrics are used in many industries, and surface treatment by plasma can significantly change their physical and mechanical properties by changing the surface chemistry and morphology. In this paper, oxygen/argon plasma has been applied to the spunbond nonwoven fabrics to predict the obtained properties. Therefore, by using the central composite design and considering 4 independent factors including the fabric weight, fabric direction, plasma treatment duration and oxygen ratio, 51 various samples were prepared and their bending rigidity and formability were measured. SEM images showed that the surface roughness increases due to the plasma treatment. Statistical analysis revealed that all the mentioned independent factors have a significant effect on the measured parameters directly or reciprocally. Also, the use of a neural network model with two hidden layers optimized with a method according to the genetic algorithm can predict the bending rigidity and formability based on the independent factors with errors of less than 7% and 9%, respectively. The errors resulting from the surface response method for the same parameters with the same order are about 19% and 17%. The introduced method can be used as a tool to help researchers in the field of mechanical properties.
ISSN:2623-6281
DOI:10.31881/TLR.2024.093