Effect of TiC Particle Size on Processing, Microstructure and Mechanical Properties of an Inconel 718/TiC Composite Material Made by Binder Jetting Additive Manufacturing
In this paper, the effect of TiC particle size on the microstructure and mechanical properties of an Inconel 718/TiC composite material fabricated using binder jetting additive manufacturing was investigated. Vacuum sintering, hot isostatic pressing and heat treatment as post-processing were applied...
Gespeichert in:
Veröffentlicht in: | Metals (Basel ) 2023-07, Vol.13 (7), p.1271 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the effect of TiC particle size on the microstructure and mechanical properties of an Inconel 718/TiC composite material fabricated using binder jetting additive manufacturing was investigated. Vacuum sintering, hot isostatic pressing and heat treatment as post-processing were applied to the samples. The addition of 1 wt% micron-sized TiC to the Inconel 718 matrix resulted in a significant increase in strength and relative elongation during tensile tests at both room temperature and 700 °C. The distribution of micron-sized TiC particles in the matrix was uniform, and the MC phase precipitated after HT was located along the grain boundaries and near the micron-sized TiC particles, which contributed to the strengthening. The hardness increased insignificantly with the addition of micron-sized TiC. The nano-sized TiC particles added to the matrix were located on the surfaces of the Inconel 718 particles of the initial powders, which obstructed sintering and resulted in a porous structure and, consequently, low mechanical properties. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met13071271 |