Analysis of IVPs and BVPs on Semi-Infinite Domains via Collocation Methods
We study the numerical solutions to semi-infinite-domain two-point boundary value problems and initial value problems. A smooth, strictly monotonic transformation is used to map the semi-infinite domain x∈[0,∞) onto a half-open interval t∈[−1,1). The resulting finite-domain two-point boundary value...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Mathematics 2012-01, Vol.2012 (2012), p.1039-1059-568 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the numerical solutions to semi-infinite-domain two-point boundary value problems and initial value problems. A smooth, strictly monotonic transformation is used to map the semi-infinite domain x∈[0,∞) onto a half-open interval t∈[−1,1). The resulting finite-domain two-point boundary value problem is transcribed to a system of algebraic equations using Chebyshev-Gauss (CG) collocation, while the resulting initial value problem over a finite domain is transcribed to a system of algebraic equations using Chebyshev-Gauss-Radau (CGR) collocation. In numerical experiments, the tuning of the map ϕ:[−1,+1)→[0,+∞) and its effects on the quality of the discrete approximation are analyzed. |
---|---|
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/2012/696574 |