Analysis of IVPs and BVPs on Semi-Infinite Domains via Collocation Methods

We study the numerical solutions to semi-infinite-domain two-point boundary value problems and initial value problems. A smooth, strictly monotonic transformation is used to map the semi-infinite domain x∈[0,∞) onto a half-open interval t∈[−1,1). The resulting finite-domain two-point boundary value...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Mathematics 2012-01, Vol.2012 (2012), p.1039-1059-568
Hauptverfasser: Maleki, Mohammad, Abbasbandy, Saeid, Hashim, Ishak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the numerical solutions to semi-infinite-domain two-point boundary value problems and initial value problems. A smooth, strictly monotonic transformation is used to map the semi-infinite domain x∈[0,∞) onto a half-open interval t∈[−1,1). The resulting finite-domain two-point boundary value problem is transcribed to a system of algebraic equations using Chebyshev-Gauss (CG) collocation, while the resulting initial value problem over a finite domain is transcribed to a system of algebraic equations using Chebyshev-Gauss-Radau (CGR) collocation. In numerical experiments, the tuning of the map ϕ:[−1,+1)→[0,+∞) and its effects on the quality of the discrete approximation are analyzed.
ISSN:1110-757X
1687-0042
DOI:10.1155/2012/696574