Hopf Bifurcation Analysis for a Four-Dimensional Recurrent Neural Network with Two Delays

A four-dimensional recurrent neural network with two delays is considered. The main result is given in terms of local stability and Hopf bifurcation. Sufficient conditions for local stability of the zero equilibrium and existence of the Hopf bifurcation with respect to both delays are obtained by an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Mathematics 2013-01, Vol.2013 (2013), p.455-467-343
Hauptverfasser: Zhang, Zizhen, Yang, Huizhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A four-dimensional recurrent neural network with two delays is considered. The main result is given in terms of local stability and Hopf bifurcation. Sufficient conditions for local stability of the zero equilibrium and existence of the Hopf bifurcation with respect to both delays are obtained by analyzing the distribution of the roots of the associated characteristic equation. In particular, explicit formulae for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are established by using the normal form theory and center manifold theory. Some numerical examples are also presented to verify the theoretical analysis.
ISSN:1110-757X
1687-0042
DOI:10.1155/2013/436254