Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT

The Coronavirus disease 2019 (COVID-19) presents open questions in how we clinically diagnose and assess disease course. Recently, chest computed tomography (CT) has shown utility for COVID-19 diagnosis. In this study, we developed Deep COVID DeteCT (DCD), a deep learning convolutional neural networ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ digital medicine 2021-01, Vol.4 (1), p.11-11, Article 11
Hauptverfasser: Lee, Edward H., Zheng, Jimmy, Colak, Errol, Mohammadzadeh, Maryam, Houshmand, Golnaz, Bevins, Nicholas, Kitamura, Felipe, Altinmakas, Emre, Reis, Eduardo Pontes, Kim, Jae-Kwang, Klochko, Chad, Han, Michelle, Moradian, Sadegh, Mohammadzadeh, Ali, Sharifian, Hashem, Hashemi, Hassan, Firouznia, Kavous, Ghanaati, Hossien, Gity, Masoumeh, Doğan, Hakan, Salehinejad, Hojjat, Alves, Henrique, Seekins, Jayne, Abdala, Nitamar, Atasoy, Çetin, Pouraliakbar, Hamidreza, Maleki, Majid, Wong, S. Simon, Yeom, Kristen W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Coronavirus disease 2019 (COVID-19) presents open questions in how we clinically diagnose and assess disease course. Recently, chest computed tomography (CT) has shown utility for COVID-19 diagnosis. In this study, we developed Deep COVID DeteCT (DCD), a deep learning convolutional neural network (CNN) that uses the entire chest CT volume to automatically predict COVID-19 (COVID+) from non-COVID-19 (COVID−) pneumonia and normal controls. We discuss training strategies and differences in performance across 13 international institutions and 8 countries. The inclusion of non-China sites in training significantly improved classification performance with area under the curve (AUCs) and accuracies above 0.8 on most test sites. Furthermore, using available follow-up scans, we investigate methods to track patient disease course and predict prognosis.
ISSN:2398-6352
2398-6352
DOI:10.1038/s41746-020-00369-1