Existence and Nonexistence of Positive Solutions for Perturbations of the Anisotropic Eigenvalue Problem

We consider a Dirichlet problem, which is a perturbation of the eigenvalue problem for the anisotropic p-Laplacian. We assume that the perturbation is (p(z)−1)-sublinear, and we prove an existence and nonexistence theorem for positive solutions as the parameter λ moves on the positive semiaxis. We a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2023-02, Vol.15 (2), p.495
Hauptverfasser: Andrusenko, Olena, Gasiński, Leszek, Papageorgiou, Nikolaos S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a Dirichlet problem, which is a perturbation of the eigenvalue problem for the anisotropic p-Laplacian. We assume that the perturbation is (p(z)−1)-sublinear, and we prove an existence and nonexistence theorem for positive solutions as the parameter λ moves on the positive semiaxis. We also show the existence of a smallest positive solution and determine the monotonicity and continuity properties of the minimal solution map.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym15020495