A True Random Number Generator Design Based on the Triboelectric Nanogenerator with Multiple Entropy Sources
The triboelectric nanogenerator (TENG) has the potential to serve as a high-entropy energy harvester, enabling the self-powered operation of Internet of Things (IoT) devices. True random number generator (TRNG) is a common feature of encryption used in IoT data communication, ensuring the security o...
Gespeichert in:
Veröffentlicht in: | Micromachines (Basel) 2024-08, Vol.15 (9), p.1072 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The triboelectric nanogenerator (TENG) has the potential to serve as a high-entropy energy harvester, enabling the self-powered operation of Internet of Things (IoT) devices. True random number generator (TRNG) is a common feature of encryption used in IoT data communication, ensuring the security of transmitted information. The benefits of multiplexing TENG and TRNG in resource-constrained IoT devices are substantial. However, current designs are limited by the usage scenarios and throughput of the TRNG. Specifically, we propose a structurally and environmentally friendly design based on the contact-separation structure, integrating heat fluctuation and charge decay as entropy sources. Furthermore, filtering and differential algorithms are recommended for data processing based on TENG characteristics to enhance randomness. Finally, a TENG-based TRNG is fabricated, and its performance is verified. Test results demonstrate a random number throughput of 25 Mbps with a randomness test pass rate approaching 99%, demonstrating suitability for resource-constrained IoT applications. |
---|---|
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi15091072 |