Exploring the distribution of energy consumption in a northeast Chinese city based on local climate zone scheme: Shenyang city as a case study

The local climate zone (LCZ) scheme is now used to investigate urban heat islands, which provides additional reference for energy consumption simulation. Based on the LCZ scheme, a LCZ mapping of Shenyang, a city in northeast China, was first constructed using the World Urban Database and Access Por...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy exploration & exploitation 2020-09, Vol.38 (5), p.2079-2094
Hauptverfasser: Yang, Guang, Fu, Yanpeng, Yan, Minghui, Zhang, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The local climate zone (LCZ) scheme is now used to investigate urban heat islands, which provides additional reference for energy consumption simulation. Based on the LCZ scheme, a LCZ mapping of Shenyang, a city in northeast China, was first constructed using the World Urban Database and Access Portal Tools (WUDAPT) Level 0 method. Subsequently, DeST-h was considered to simulate the energy consumption of urban buildings with concentration areas. The results show that with Shenyang being a severely cold area, the annual energy consumption of heating is approximately twice that of refrigeration for an individual building. The total energy consumption of open-distributed single buildings is higher than that of compact-distributed single buildings. Consequently, the unit cumulative energy consumption in compact-distributed buildings is higher than that in openly distributed building areas. The compact high-rise buildings (LCZ 1) have the highest energy consumption, with a unit annual energy consumption of 123,771.150 MW⋅h, which is equivalent to 41,257 tons of standard coal combustion power generation. Considering the energy consumption of residential buildings, the central high-rise buildings group and the compact centralized middle-rise buildings in the downtown area are high energy consumption areas. For future urban planning, design strategies such as energy-saving transformation and energy planning should be considered. The research results can provide a scientific basis and theoretical support for reducing building energy consumption, alleviating the urban heat island effect, and the development of modern urban planning.
ISSN:0144-5987
2048-4054
DOI:10.1177/0144598720950465