Characteristics and phylogenetic distribution of megaplasmids and prediction of a putative chromid in Pseudomonas aeruginosa

Research on megaplasmids that contribute to the spread of antimicrobial resistance (AMR) in Pseudomonas aeruginosa strains has grown in recent years due to the now widely used technologies allowing long-read sequencing. Here, we systematically analyzed distinct and consistent genetic characteristics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and structural biotechnology journal 2024-12, Vol.23, p.1418-1428
Hauptverfasser: Wang, Nanfei, Zheng, Xuan, Leptihn, Sebastian, Li, Yue, Cai, Heng, Zhang, Piaopiao, Wu, Wenhao, Yu, Yunsong, Hua, Xiaoting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Research on megaplasmids that contribute to the spread of antimicrobial resistance (AMR) in Pseudomonas aeruginosa strains has grown in recent years due to the now widely used technologies allowing long-read sequencing. Here, we systematically analyzed distinct and consistent genetic characteristics of megaplasmids found in P. aeruginosa. Our data provide information on their phylogenetic distribution and hypotheses tracing the potential evolutionary paths of megaplasmids. Most of the megaplasmids we found belong to the IncP-2-type, with conserved and syntenic genetic backbones carrying modules of genes associated with chemotaxis apparatus, tellurite resistance and plasmid replication, segregation, and transmission. Extensively variable regions harbor abundant AMR genes, especially those encoding β-lactamases such as VIM-2, IMP-45, and KPC variants, which are high-risk elements in nosocomial infection. IncP-2 megaplasmids act as effective vehicles transmitting AMR genes to diverse regions. One evolutionary model of the origin of megaplasmids claims that chromids can develop from megaplasmids. These chromids have been characterized as an intermediate between a megaplasmid and a chromosome, also containing core genes that can be found on the chromosome but not on the megaplasmid. Using in silico prediction, we identified the “PABCH45 unnamed replicon” as a putative chromid in P. aeruginosa, which shows a much higher similarity and closer phylogenetic relationship to chromosomes than to megaplasmids while also encoding plasmid-like partition genes. We propose that such a chromid could facilitate genome expansion, allowing for more rapid adaptations to novel ecological niches or selective conditions, in comparison to megaplasmids. [Display omitted]
ISSN:2001-0370
2001-0370
DOI:10.1016/j.csbj.2024.04.002