Investigation of Aeroelasticity Effect on Missile Separation from the Internal Bay

There is a strong aerodynamic interference when launching the missile in the embedded mode. During the separation process, the carrier aircraft safety may be threatened due to large slenderness ratio, low structural stiffness, and aeroelasticity effects of the missile. The present study simulates mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Aerospace Engineering 2023-02, Vol.2023, p.1-16
Hauptverfasser: Tian, Shuling, Li, Rongjie, Xu, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is a strong aerodynamic interference when launching the missile in the embedded mode. During the separation process, the carrier aircraft safety may be threatened due to large slenderness ratio, low structural stiffness, and aeroelasticity effects of the missile. The present study simulates missile separation in the presence of the aeroelasticity effects based on the computational fluid dynamics (CFD), rigid body dynamics (RBD), and computational structure dynamics (CSD) coupling method. A hybrid dynamic grid method consisting of the mixed overset unstructured grid and deformation grid is utilized. In order to verify the accuracy of the coupled numerical method, store separation from a wing and AGARD 445.6 wing flutter are first simulated as two standard test cases. The verification results imply that the present coupled numerical method is reliable and capable in simulation of the aeroelastic effect in missile separation. The influence of aeroelasticity on the separation trajectory of a missile from the internal bay is systematically studied at different states. Numerical results show that aeroelasticity substantially affects the missile angular displacement, while it has a slight impact on the linear displacement of the center of mass. Mach number and flight altitude are two important flight parameters that characterize the aeroelasticity effect on missile separation from the internal bay.
ISSN:1687-5966
1687-5974
DOI:10.1155/2023/9875622