Efficient homing of T cells via afferent lymphatics requires mechanical arrest and integrin-supported chemokine guidance

Little is known regarding lymph node (LN)-homing of immune cells via afferent lymphatics. Here, we show, using a photo-convertible Dendra-2 reporter, that recently activated CD4 T cells enter downstream LNs via afferent lymphatics at high frequencies. Intra-lymphatic immune cell transfer and live im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-02, Vol.11 (1), p.1114-1114, Article 1114
Hauptverfasser: Martens, Rieke, Permanyer, Marc, Werth, Kathrin, Yu, Kai, Braun, Asolina, Halle, Olga, Halle, Stephan, Patzer, Gwendolyn E., Bošnjak, Berislav, Kiefer, Friedemann, Janssen, Anika, Friedrichsen, Michaela, Poetzsch, Jenny, Kohli, Karan, Lueder, Yvonne, Gutierrez Jauregui, Rodrigo, Eckert, Nadine, Worbs, Tim, Galla, Melanie, Förster, Reinhold
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Little is known regarding lymph node (LN)-homing of immune cells via afferent lymphatics. Here, we show, using a photo-convertible Dendra-2 reporter, that recently activated CD4 T cells enter downstream LNs via afferent lymphatics at high frequencies. Intra-lymphatic immune cell transfer and live imaging data further show that activated T cells come to an instantaneous arrest mediated passively by the mechanical 3D-sieve barrier of the LN subcapsular sinus (SCS). Arrested T cells subsequently migrate randomly on the sinus floor independent of both chemokines and integrins. However, chemokine receptors are imperative for guiding cells out of the SCS, and for their subsequent directional translocation towards the T cell zone. By contrast, integrins are dispensable for LN homing, yet still contribute by increasing the dwell time within the SCS and by potentially enhancing T cell sensing of chemokine gradients. Together, these findings provide fundamental insights into mechanisms that control homing of lymph-derived immune cells. Immune cells mostly enter lymph nodes (LN) from blood circulation, but whether afferent lymphatics contributes to LN entry is unclear. Here, the authors show, using a photo-convertible reporter, that T cells in afferent lymphatics frequently enter LN and become arrested in the subcapsular sinus, with chemokines and integrins further guiding their migration in the LN.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-14921-w