Impact of the first-forbidden β decay on the production of A∼195 r-process peak

We investigated the effects of first-forbidden transitions in β decays on the production of the r-process A∼195 peak. The theoretical calculated β-decay rates with β-delayed neutron emission were examined using several astrophysical conditions. As the FF decay is dominant in N∼126 neutron-rich nucle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. B 2016-05, Vol.756 (C), p.273-277
Hauptverfasser: Nishimura, Nobuya, Podolyák, Zsolt, Fang, Dong-Liang, Suzuki, Toshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated the effects of first-forbidden transitions in β decays on the production of the r-process A∼195 peak. The theoretical calculated β-decay rates with β-delayed neutron emission were examined using several astrophysical conditions. As the FF decay is dominant in N∼126 neutron-rich nuclei, their inclusion shortens β-decay lifetimes and shifts the abundance peak towards higher masses. Additionally, the inclusion of the β-delayed neutron emission results in a wider abundance peak, and smoothens the mass distribution by removing the odd–even mass staggering. The effects are commonly seen in the results of all adopted astrophysical models. Nevertheless there are quantitative differences, indicating that remaining uncertainty in the determination of half-lives for N=126 nuclei is still significant in order to determine the production of the r-process peak.
ISSN:0370-2693
1873-2445
DOI:10.1016/j.physletb.2016.03.025