The Edit Distance Function of Some Graphs

The edit distance function of a hereditary property is the asymptotically largest edit distance between a graph of density ∈ [0, 1] and . Denote by and the path graph of order and the cycle graph of order , respectively. Let be the cycle graph with a diagonal, and be the graph with vertex set { , ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discussiones Mathematicae. Graph Theory 2020-08, Vol.40 (3), p.807-821
Hauptverfasser: Hu, Yumei, Shi, Yongtang, Wei, Yarong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The edit distance function of a hereditary property is the asymptotically largest edit distance between a graph of density ∈ [0, 1] and . Denote by and the path graph of order and the cycle graph of order , respectively. Let be the cycle graph with a diagonal, and be the graph with vertex set { , , . } and . Marchant and Thomason determined the edit distance function of . Peck studied the edit distance function of , while Berikkyzy studied the edit distance of powers of cycles. In this paper, by using the methods of Peck and Martin, we determine the edit distance function of , and , respectively.
ISSN:1234-3099
2083-5892
DOI:10.7151/dmgt.2154