The Edit Distance Function of Some Graphs
The edit distance function of a hereditary property is the asymptotically largest edit distance between a graph of density ∈ [0, 1] and . Denote by and the path graph of order and the cycle graph of order , respectively. Let be the cycle graph with a diagonal, and be the graph with vertex set { , ,...
Gespeichert in:
Veröffentlicht in: | Discussiones Mathematicae. Graph Theory 2020-08, Vol.40 (3), p.807-821 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The edit distance function of a hereditary property is the asymptotically largest edit distance between a graph of density
∈ [0, 1] and . Denote by
and
the path graph of order
and the cycle graph of order
, respectively. Let
be the cycle graph
with a diagonal, and
be the graph with vertex set {
,
, .
} and
. Marchant and Thomason determined the edit distance function of
. Peck studied the edit distance function of
, while Berikkyzy
studied the edit distance of powers of cycles. In this paper, by using the methods of Peck and Martin, we determine the edit distance function of
,
and
, respectively. |
---|---|
ISSN: | 1234-3099 2083-5892 |
DOI: | 10.7151/dmgt.2154 |