Thermoelectric Generator as the Waste Heat Recovery Unit of Proton Exchange Membrane Fuel Cell: A Numerical Study

The proton exchange membrane fuel cell (PEMFC) is a prominent environmentally friendly alternative candidate to internal combustion engines in automotive applications. The recovery of the waste heat of light-duty diesel engines has been investigated recently, which is similarly relevant for PEMFCs....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2022-05, Vol.15 (9), p.3018
Hauptverfasser: Pourrahmani, Hossein, Shakeri, Hamed, Van herle, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The proton exchange membrane fuel cell (PEMFC) is a prominent environmentally friendly alternative candidate to internal combustion engines in automotive applications. The recovery of the waste heat of light-duty diesel engines has been investigated recently, which is similarly relevant for PEMFCs. Thermoelectric generators (TEG) applied on the stack’s walls have been already proposed and tested as a cooling method for small scale applications of the PEMFC. For the medium scale usages of the PEMFC stack, TEG technology may be further used to recover heat lost through the cooling water required for stack thermal management, which was the focus of the present study. Using an agglomerate model for the PEMFC and a computational fluid dynamic (CFD) thermal model for the TEG heat exchanger unit, the operation and performance of the PEMFC stack and heat recovery unit were simulated, respectively. After validation, results indicated that the transferred heat from the PEMFC to the cooling channel increased the temperature of the coolant from room temperature to 330.5 K at the current density of 0.8 A/cm2. CFD analysis revealed that 37.7 W of the heated wasted by the PEMFC stack could be recovered by the currently available TEG material and geometry.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15093018