Atomic imaging of mechanically induced topological transition of ferroelectric vortices
Ferroelectric vortices formed through complex lattice–charge interactions have great potential in applications for future nanoelectronics such as memories. For practical applications, it is crucial to manipulate these topological states under external stimuli. Here, we apply mechanical loads to loca...
Gespeichert in:
Veröffentlicht in: | Nature communications 2020-04, Vol.11 (1), p.1840-1840, Article 1840 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ferroelectric vortices formed through complex lattice–charge interactions have great potential in applications for future nanoelectronics such as memories. For practical applications, it is crucial to manipulate these topological states under external stimuli. Here, we apply mechanical loads to locally manipulate the vortices in a PbTiO
3
/SrTiO
3
superlattice via atomically resolved in-situ scanning transmission electron microscopy. The vortices undergo a transition to the
a
-domain with in-plane polarization under external compressive stress and spontaneously recover after removal of the stress. We reveal the detailed transition process at the atomic scale and reproduce this numerically using phase-field simulations. These findings provide new pathways to control the exotic topological ferroelectric structures for future nanoelectronics and also valuable insights into understanding of lattice-charge interactions at nanoscale.
Controlling topological polar vortices promises to open up new applications for ferroelectric materials. Here, the authors proposed a method to mechanically manipulate polar vortices and monitored the transition between vortex and ferroelectric phase by in-situ scanning transmission electron microscopy. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-15616-y |