Positive Definite Solutions of the Matrix Equation Xr-∑i=1mAi∗X-δiAi=I

We investigate the nonlinear matrix equation Xr-∑i=1mAi∗X-δiAi=I, where r is a positive integer and δi∈(0,1], for i=1,2,…,m. We establish necessary and sufficient conditions for the existence of positive definite solutions of this equation. A sufficient condition for the equation to have a unique po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and applied analysis 2015, Vol.2015 (2015), p.1-8
1. Verfasser: al-Dubiban, Asmaa M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the nonlinear matrix equation Xr-∑i=1mAi∗X-δiAi=I, where r is a positive integer and δi∈(0,1], for i=1,2,…,m. We establish necessary and sufficient conditions for the existence of positive definite solutions of this equation. A sufficient condition for the equation to have a unique positive definite solution is established. An iterative algorithm is provided to compute the positive definite solutions for the equation and error estimate. Finally, some numerical examples are given to show the effectiveness and convergence of this algorithm.
ISSN:1085-3375
1687-0409
DOI:10.1155/2015/473965