Technical note: Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks

Ingesting near-real-time observation data is a critical component of many operational hydrological forecasting systems. In this paper, we compare two strategies for ingesting near-real-time streamflow observations into long short-term memory (LSTM) rainfall–runoff models: autoregression (a forward m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrology and earth system sciences 2022-11, Vol.26 (21), p.5493-5513
Hauptverfasser: Nearing, Grey S, Klotz, Daniel, Frame, Jonathan M, Gauch, Martin, Gilon, Oren, Kratzert, Frederik, Sampson, Alden Keefe, Shalev, Guy, Nevo, Sella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ingesting near-real-time observation data is a critical component of many operational hydrological forecasting systems. In this paper, we compare two strategies for ingesting near-real-time streamflow observations into long short-term memory (LSTM) rainfall–runoff models: autoregression (a forward method) and variational data assimilation. Autoregression is both more accurate and more computationally efficient than data assimilation. Autoregression is sensitive to missing data, however an appropriate (and simple) training strategy mitigates this problem. We introduce a data assimilation procedure for recurrent deep learning models that uses backpropagation to make the state updates.
ISSN:1607-7938
1027-5606
1607-7938
DOI:10.5194/hess-26-5493-2022