Air Quality Measurements in Kitchener, Ontario, Canada Using Multisensor Mini Monitoring Stations

The Region of Waterloo is the third fastest growing region in Southern Ontario in Canada with a population of 619,000 as of 2019. However, only one air quality monitoring station, located in a city park in Kitchener, Ontario, is currently being used to assess the air quality of the region. In Septem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmosphere 2022-01, Vol.13 (1), p.83
Hauptverfasser: Mohammed, Wisam, Shantz, Nicole, Neil, Lucas, Townend, Tom, Adamescu, Adrian, Al-Abadleh, Hind A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Region of Waterloo is the third fastest growing region in Southern Ontario in Canada with a population of 619,000 as of 2019. However, only one air quality monitoring station, located in a city park in Kitchener, Ontario, is currently being used to assess the air quality of the region. In September 2020, a network of AQMesh Multisensor Mini Monitoring Stations (pods) were installed near elementary schools in Kitchener located near different types of emission source. Data analysis using a custom-made long-distance scaling software showed that the levels of nitrogen oxides (NO and NO2), ground level ozone (O3), and fine particulate matter (PM2.5) were traffic related. These pollutants were used to calculate the Air Quality Health Index-Plus (AQHI+) at each location, highlighting the inability of the provincial air quality monitoring station to detect hotspot areas in the city. The case study presented here quantified the impact of the 2021 summer wildfires on the local air quality at a high time resolution (15-min). The findings in this article show that these multisensor pods are a viable alternative to expensive research-grade equipment. The results highlight the need for networks of local scale air quality measurements, particularly in fast-growing cities in Canada.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos13010083