Silver Nanoparticles Decorated in In Situ Reduced Graphene Oxide Nanohybrids Improved Properties in Poly(vinylidene fluoride)/Poly(methyl methacrylate) Blends

In this paper, reduced graphene oxide decorated with silver nanoparticle (rGO-Ag) nanohybrids were prepared using an environmentally friendly approach and incorporated as reinforcement in poly(vinylidene fluoride)-poly(methyl methacrylate) blends via a melt mixing process. The microstructure of rGO-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of polymer science 2024, Vol.2024 (1)
Hauptverfasser: Khorramshokouh, Afifeh, Ramezani, Hesam, Sahami, Mehdi, Sharif, Mehdi, Vaferi, Behzad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, reduced graphene oxide decorated with silver nanoparticle (rGO-Ag) nanohybrids were prepared using an environmentally friendly approach and incorporated as reinforcement in poly(vinylidene fluoride)-poly(methyl methacrylate) blends via a melt mixing process. The microstructure of rGO-Ag nanohybrids and its effect on the microstructure, mechanical, thermal, and electrical properties of the PVDF/PMM/rGO-Ag was studied using Fourier transform infrared (FTIR), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), tensile, thermogravimetric analysis (TGA), and impedance spectroscopy methods. FTIR and TEM analysis confirmed that rGO-Ag successfully synthesized and Ag nanoparticles are located on the rGO surface. The tensile analysis demonstrated that incorporating 1 wt.% of rGO-Ag in PVDF/PMMA blend increases Young’s modulus and strength of nanocomposite up to 31% and 35%, respectively. The Halpin-Tsai model was also used for PVDF/PMMA/rGO-Ag nanocomposites, and the results confirmed that this model works well to predict the tensile modulus. Impedance spectroscopy analysis showed that the presence of rGO-Ag nanohybrids in PVDF/PMMA blend effectively enhanced the conductivity of PVDF/PMMA blend. TGA results demonstrated that the presence of rGO-Ag nanohybrids enhanced the thermal stability of nanocomposites and increased the degradation temperature of PVDF/PMMA/rGO-Ag nanocomposites in the range of 20°C compared to PVDF/PMMA blend.
ISSN:1687-9422
1687-9430
DOI:10.1155/2024/1156880