Piracetam as a Therapeutic Agent for Doxorubicin-Induced Cognitive Deficits by Enhancing Cholinergic Functions and Reducing Neuronal Inflammation, Apoptosis, and Oxidative Stress in Rats

Cancer chemotherapy is known to cause cognitive defects in patients. Our study investigated the effect of piracetam (PIRA; 200 or 400 mg/kg) against doxorubicin (DOX)-induced cognitive deficits in a rat model. The cognitive parameters were analyzed using elevated plus-maze, novel object recognition,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceuticals (Basel, Switzerland) Switzerland), 2022-12, Vol.15 (12), p.1563
Hauptverfasser: Mani, Vasudevan, Rabbani, Syed Imam, Shariq, Ali, Amirthalingam, Palanisamy, Arfeen, Minhajul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cancer chemotherapy is known to cause cognitive defects in patients. Our study investigated the effect of piracetam (PIRA; 200 or 400 mg/kg) against doxorubicin (DOX)-induced cognitive deficits in a rat model. The cognitive parameters were analyzed using elevated plus-maze, novel object recognition, and Y-maze tests. Acetylcholinesterase (AChE), neuroinflammatory mediators (cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), nuclear factor-κB (NF-κB), tumor necrosis factor-alpha (TNF-α)), apoptotic proteins (B-cell lymphoma-2 (Bcl-2), Bcl2 associated X protein (Bax), cysteine aspartate specific protease-3 (caspase-3)), oxidative parameters (malondialdehyde (MDA), catalase (CAT), and glutathione (GSH)) were also determined in the brain. PIRA administration offered significant protection against DOX-induced cognitive deficits in all maze tests and restored cholinergic functions via a significant reduction in AChE levels. Additionally, PIRA suppressed DOX-induced neuroinflammatory mediators (COX-2, PGE2, NF-κB, and TNF-α), pro-apoptotic proteins (Bax and caspase-3), and oxidative stress (MDA). Besides, it facilitated antioxidant (CAT and GSH) levels. Hence, our study highlighted that the neuroprotective activity of PIRA against DOX-induced cognitive deficits can be linked to reductions of AChE levels, neuro-inflammatory mediators, pro-apoptotic proteins, and oxidative stress.
ISSN:1424-8247
1424-8247
DOI:10.3390/ph15121563