Canonical Concordance Correlation Analysis

A multivariate technique named Canonical Concordance Correlation Analysis (CCCA) is introduced. In contrast to the classical Canonical Correlation Analysis (CCA) which is based on maximization of the Pearson’s correlation coefficient between the linear combinations of two sets of variables, the CCCA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-01, Vol.11 (1), p.99
1. Verfasser: Lipovetsky, Stan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A multivariate technique named Canonical Concordance Correlation Analysis (CCCA) is introduced. In contrast to the classical Canonical Correlation Analysis (CCA) which is based on maximization of the Pearson’s correlation coefficient between the linear combinations of two sets of variables, the CCCA maximizes the Lin’s concordance correlation coefficient which accounts not just for the maximum correlation but also for the closeness of the aggregates’ mean values and the closeness of their variances. While the CCA employs the centered data with excluded means of the variables, the CCCA can be understood as a more comprehensive characteristic of similarity, or agreement between two data sets measured simultaneously by the distance of their mean values and the distance of their variances, together with the maximum possible correlation between the aggregates of the variables in the sets. The CCCA is expressed as a generalized eigenproblem which reduces to the regular CCA if the means of the aggregates are equal, but for the different means it yields a different from CCA solution. The properties and applications of this type of multivariate analysis are described. The CCCA approach can be useful for solving various applied statistical problems when closeness of the aggregated means and variances, together with the maximum canonical correlations are needed for a general agreement between two data sets.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11010099