Multipass quantum process tomography

We introduce a method to enhance the precision and accuracy of Quantum Process Tomography (QPT) by mitigating the errors caused by state preparation and measurement (SPAM), readout and shot noise. Instead of performing QPT solely on a single gate, we propose performing QPT on a sequence of multiple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-08, Vol.14 (1), p.18185-18, Article 18185
Hauptverfasser: Stanchev, Stancho G., Vitanov, Nikolay V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a method to enhance the precision and accuracy of Quantum Process Tomography (QPT) by mitigating the errors caused by state preparation and measurement (SPAM), readout and shot noise. Instead of performing QPT solely on a single gate, we propose performing QPT on a sequence of multiple applications of the same gate. The method involves the measurement of the Pauli transfer matrix (PTM) by standard QPT of the multipass process, and then deduce the single-process PTM by two alternative approaches: an iterative approach which in theory delivers the exact result for small errors, and a linearized approach based on solving the Sylvester equation. We examine the efficiency of these two approaches through simulations on IBM Quantum using ibmq_qasm_simulator . Compared to the Randomized Benchmarking type of methods, the proposed method delivers the entire PTM rather than a single number (fidelity). Compared to standard QPT, our method delivers PTM with much higher accuracy and precision because it greatly reduces the SPAM, readout and shot noise errors. We use the proposed method to experimentally determine the PTM and the fidelity of the CNOT gate on the quantum processor ibmq_manila (Falcon r5.11L).
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-68353-3