Depth to Diameter Analysis on Small Simple Craters at the Lunar South Pole—Possible Implications for Ice Harboring

In this paper, we present a study comparing the depth to diameter (d/D) ratio of small simple craters (200–1000 m) of an area between −88.5° to −90° latitude at the lunar south pole containing Permanent Shadowed Regions (PSRs) versus craters without PSRs. As PSRs can reach temperatures of 110 K and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2022-02, Vol.14 (3), p.450
Hauptverfasser: Marco Figuera, Ramiro, Riedel, Christian, Rossi, Angelo Pio, Unnithan, Vikram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a study comparing the depth to diameter (d/D) ratio of small simple craters (200–1000 m) of an area between −88.5° to −90° latitude at the lunar south pole containing Permanent Shadowed Regions (PSRs) versus craters without PSRs. As PSRs can reach temperatures of 110 K and are capable of harboring volatiles, especially water ice, we analyzed the relationship of depth versus diameter ratios and its possible implications for harboring water ice. Variations in the d/D ratios can also be caused by other processes such as degradation, isostatic adjustment, or differences in surface properties. The conducted d/D ratio analysis suggests that a differentiation between craters containing PSRs versus craters without PSRs occurs. Thus, a possible direct relation between d/D ratio, PSRs, and water ice harboring might exist. Our results suggest that differences in the target’s surface properties may explain the obtained results. The resulting d/D ratios of craters with PSRs can help to select target areas for future In-Situ Resource Utilization (ISRU) missions.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14030450