Colorimetric sensing of cephradine through polypropylene glycol functionalized gold nanoparticles

The development of metal nanoparticle-based facile colorimetric assays for drugs and insecticides is an emerging area of current scientific research. In the present work, polypropylene glycol was used for stabilization of gold nanoparticles (AuNPs) in a simple one-pot two-phase process and subsequen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Royal Society open science 2021-05, Vol.8 (5), p.210185-210185
Hauptverfasser: Raja, Daim Asif, Munir, Fazeelah, Shah, Muhammad Raza, Bhanger, Muhammad Iqbal, Malik, Muhammad Imran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of metal nanoparticle-based facile colorimetric assays for drugs and insecticides is an emerging area of current scientific research. In the present work, polypropylene glycol was used for stabilization of gold nanoparticles (AuNPs) in a simple one-pot two-phase process and subsequently employed it for the specific detection of cephradine (CPH). The characterization of the prepared PPG-AuNPs was conducted through various analytical techniques such as UV-visible spectrophotometry, Fourier transform infrared spectroscopy, atomic force microscopy (AFM), zeta potential and zetasizer techniques. As the major target of the study, the stabilized PPG-AuNPs were employed for colorimetric detection of CPH and other drugs. Typical wine-red colour of PPG-AuNPs disappeared immediately and surface plasmon resonance band quenched by addition of CPH in the presence of several other interferents (drugs and salts) and in real samples. PPG-AuNPs permitted efficient, selective, reliable and rapid determination in a concentration range of 0.01-120 mM with a detection limit (LoD) of 11.0 mM. The developed sensor has the potential to be used for fast scanning of pharmaceutical formulations for quantification of CPH at production facilities.
ISSN:2054-5703
2054-5703
DOI:10.1098/rsos.210185