On Increasing the Energy Efficiency of Wireless Rechargeable Sensor Networks for Cyber-Physical Systems

In recent times, wireless energy transfer has become an effective solution to charge devices due to its efficiency and reliability. In a typical Wireless Rechargeable Sensor Networks (WRSN), wireless energy transfer technique can solve the energy depletion problem with the aid of a Wireless Charging...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2022-02, Vol.15 (3), p.1204
Hauptverfasser: Orumwense, Efe Francis, Abo-Al-Ez, Khaled
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent times, wireless energy transfer has become an effective solution to charge devices due to its efficiency and reliability. In a typical Wireless Rechargeable Sensor Networks (WRSN), wireless energy transfer technique can solve the energy depletion problem with the aid of a Wireless Charging Vehicle (WCV), thereby enabling the network to extend its lifetime. However, sensor nodes in a WRSN still have their energies depleted before it gets replenished by the WCV. In this paper, we proposed a scheme that prioritizes sensor nodes for charging and also developed efficient algorithms to improve on existing charging schemes so as to extend the lifetime of the WRSN. Firstly, an inspection algorithm was developed to visit and inspect sensor nodes in the network so as to determine the sensor nodes to charge. Secondly, a greedy charge algorithm was introduced to ascertain the shortest distance the WCV needs to travel and, lastly, an energy for nodes’ algorithm was proposed to determine the stopping point and when the WCV needs to return to the base station. Simulation experiments were also conducted to determine the performance of our scheme. The simulation experiments revealed that our proposed scheme made significant improvements when compared to other schemes in literature using several metrics.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15031204