Time-lapse 3D imaging by positron emission tomography of Cu mobilized in a soil column by the herbicide MCPA

Phenoxyalkanoic acids like the 4-chloro-2-methylphenoxyacetic acid (MCPA) are the second highest used xenobiotic herbicides worldwide after glyphosate because of their apparently favorable environmental properties. Experimental batch equilibration data suggested a reduced Cu adsorption efficiency wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2018-05, Vol.8 (1), p.7091-9, Article 7091
Hauptverfasser: Kulenkampff, Johannes, Stoll, Madeleine, Gründig, Marion, Mansel, Alexander, Lippmann-Pipke, Johanna, Kersten, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phenoxyalkanoic acids like the 4-chloro-2-methylphenoxyacetic acid (MCPA) are the second highest used xenobiotic herbicides worldwide after glyphosate because of their apparently favorable environmental properties. Experimental batch equilibration data suggested a reduced Cu adsorption efficiency with the soil mineral goethite below pH 6 in presence of MCPA. This has been verified by advanced surface complexation adsorption modelling involving dissolved Cu-MCPA complexation constants. Positron emission tomography is a non-invasive molecular imaging method for time-resolved three-dimensional information commonly applied on non-retarded tracers in soil core scale experiments. Mineral surface reactive tracers like Cu-64 are too immobile for the relatively short observation times available with this advanced imaging technique. However, Cu-64 radiolabeled Cu-MCPA complex migration could be observed in as long as 10-cm artificial soil test columns where break-through occurred within a few days. For the first time, time-lapse movies of Cu migration in the opaque soil columns were recorded using this novel reactive transport process tomography approach.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-018-25413-9