Characterization of the Elasticity of CD4 + T Cells: An Approach Based on Peak Force Quantitative Nanomechanical Mapping
CD4 T cells are essential players in orchestrating the specific immune response against intracellular pathogens, and in inhibiting tumor development in an early stage. The activation of T cells is triggered by engagement of T cell receptors (TCRs). Here, CD3 and CD28 molecules are key factors, (co)s...
Gespeichert in:
Veröffentlicht in: | Bio-protocol 2022-04, Vol.12 (8), p.e4383-e4383 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CD4
T cells are essential players in orchestrating the specific immune response against intracellular pathogens, and in inhibiting tumor development in an early stage. The activation of T cells is triggered by engagement of T cell receptors (TCRs). Here, CD3 and CD28 molecules are key factors, (co)stimulating signaling pathways essential for activation and proliferation of CD4
T cells. T cell activation induces the formation of a tight mechanical bond between T cell and target cell, the so-called immunological synapse (IS). Due to this, mechanical cell properties, including stiffness, play a significant role in modulating cell functions. In the past, many approaches were made to investigate mechanical properties of immune cells, including micropipette aspiration, microplate-based rheometry, techniques based on deformation during cytometry, or the use of optical tweezers. However, the stiffness of T lymphocytes at a subcellular level at the IS still remains largely elusive. With this protocol, we introduce a method based on atomic force microscopy (AFM), to investigate the local cellular stiffness of T cells on functionalized glass/Polydimethylsiloxan (PDMS) surfaces, which mimicks focal stimulation of target cells inducing IS formation by T cells. By applying the peak force nanomechanical mapping (QNM) technique, cellular surface structures and the local stiffness are determined simultaneously, with a resolution of approximately 60 nm. This protocol can be easily adapted to investigate the mechanical impact of numerous factors influencing IS formation and T cell activation.
Individual experimental steps are shown on the left, hands on and incubation times for each step are shown right. |
---|---|
ISSN: | 2331-8325 2331-8325 |
DOI: | 10.21769/BioProtoc.4383 |