A novel AAV9-dual microRNA-vector targeting GRIK2 in the hippocampus as a treatment for mesial temporal lobe epilepsy

Mesial temporal lobe epilepsy (mTLE) is the most prevalent type of epilepsy in adults. First and subsequent generations of anti-epileptic therapy regimens fail to decrease seizures in a large number of patients suffering from mTLE, leaving surgical ablation of part of the hippocampus as the only the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy. Methods & clinical development 2024-12, Vol.32 (4), p.101342, Article 101342
Hauptverfasser: Baudouin, Stéphane J., Giles, April R., Pearson, Nick, Deforges, Severine, He, Chenxia, Boileau, Céline, Partouche, Nicolas, Borta, Andreas, Gautron, Justine, Wartel, Morgane, Bočkaj, Irena, Scavarda, Didier, Bartolomei, Fabrice, Penchet, Guillaume, Aupy, Jérôme, Sims, Jennifer, Smith, Jared, Mercer, Andrew, Danos, Olivier, Mulle, Christophe, Crépel, Valérie, Porter, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mesial temporal lobe epilepsy (mTLE) is the most prevalent type of epilepsy in adults. First and subsequent generations of anti-epileptic therapy regimens fail to decrease seizures in a large number of patients suffering from mTLE, leaving surgical ablation of part of the hippocampus as the only therapeutic option to potentially reach seizure freedom. GluK2 has recently been identified as a promising target for the treatment of mTLE using gene therapy. Here, we engineered an adeno-associated virus serotype 9 vector expressing a cluster of two synthetic microRNAs (miRNAs), expressed from the human synapsin promoter, that target GRIK2 mRNA. Intra-hippocampal delivery of this vector in a mouse model of mTLE significantly reduced GRIK2 expression and daily seizure frequency. This treatment also improved the animals' health, reduced their anxiety, and restored working memory. Focal administration of the vector to the hippocampus of cynomolgus monkeys in GLP toxicology studies led to the selective transduction of hippocampal neurons with little exposure elsewhere in the brain and no transduction outside the central nervous system. Expression of miRNAs in hippocampal neurons resulted in substantially decreased GRIK2 mRNA expression. These data suggest that the intra-hippocampal delivery of a GMP-grade AAV9 encoding a synthetic miRNAs targeting GRIK2 is a promising treatment strategy for mTLE. [Display omitted] A gene therapy is developed for the treatment of epileptic and non-epiletpic symptoms of mesial temporal lobe epilepsy (mTLE). A GMP-grade AAV9 coding for synthetic miRNAs targeting the kainate receptor GRIK2 showed efficacy and safety in animal models for mTLE epilepsy and non-human primate.
ISSN:2329-0501
2329-0501
DOI:10.1016/j.omtm.2024.101342