Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network
Tomato is affected by various diseases and pests during its growth process. If the control is not timely, it will lead to yield reduction or even crop failure. How to control the diseases and pests effectively and help the vegetable farmers to improve the yield of tomato is very important, and the m...
Gespeichert in:
Veröffentlicht in: | Frontiers in plant science 2020-06, Vol.11, p.898-898 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tomato is affected by various diseases and pests during its growth process. If the control is not timely, it will lead to yield reduction or even crop failure. How to control the diseases and pests effectively and help the vegetable farmers to improve the yield of tomato is very important, and the most important thing is to accurately identify the diseases and insect pests. Compared with the traditional pattern recognition method, the diseases and pests recognition method based on deep learning can directly input the original image. Instead of the tedious steps such as image preprocessing, feature extraction and feature classification in the traditional method, the end-to-end structure is adopted to simplify the recognition process and solve the problem that the feature extractor designed manually is difficult to obtain the feature expression closest to the natural attribute of the object. Based on the application of deep learning object detection, not only can save time and effort, but also can achieve real-time judgment, greatly reduce the huge loss caused by diseases and pests, which has important research value and significance. Based on the latest research results of detection theory based on deep learning object detection and the characteristics of tomato diseases and pests images, this study will build the dataset of tomato diseases and pests under the real natural environment, optimize the feature layer of Yolo V3 model by using image pyramid to achieve multi-scale feature detection, improve the detection accuracy and speed of Yolo V3 model, and detect the location and category of diseases and pests of tomato accurately and quickly. Through the above research, the key technology of tomato pest image recognition in natural environment is broken through, which provides reference for intelligent recognition and engineering application of plant diseases and pests detection. |
---|---|
ISSN: | 1664-462X 1664-462X |
DOI: | 10.3389/fpls.2020.00898 |